Optimal Interdiction of Unreactive Markovian Evaders

نویسندگان

  • Alexander Gutfraind
  • Aric A. Hagberg
  • Feng Pan
چکیده

The interdiction problem arises in a variety of areas including military logistics, infectious disease control, and counter-terrorism. In the typical formulation of network interdiction, the task of the interdictor is to find a set of edges in a weighted network such that the removal of those edges would maximally increase the cost to an evader of traveling on a path through the network. Our work is motivated by cases in which the evader has incomplete information about the network or lacks planning time or computational power, e.g. when authorities set up roadblocks to catch bank robbers, the criminals do not know all the roadblock locations or the best path to use for their escape. We introduce a model of network interdiction in which the motion of one or more evaders is described by Markov processes and the evaders are assumed not to react to interdiction decisions. The interdiction objective is to find an edge set of size B, that maximizes the probability of capturing the evaders. We prove that similar to the standard least-cost formulation for deterministic motion this interdiction problem is also NP-hard. But unlike that problem our interdiction problem is submodular and the optimal solution can be approximated within 1−1/e using a greedy algorithm. Additionally, we exploit submodularity through a priority evaluation strategy that eliminates the linear complexity scaling in the number of network edges and speeds up the solution by orders of magnitude. Taken together the results bring closer the goal of finding realistic solutions to the interdiction problem on global-scale networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markovian Network Interdiction and the Four Color Theorem

The Unreactive Markovian Evader Interdiction Problem (UME) asks to optimally place sensors on a network to detect Markovian motion by one or more evaders . It was previously proved that nding the optimal sensor placement is NP-hard if the number of evaders is unbounded. Here we show that the problem is NP-hard with just 2 evaders using a connection to coloring of planar graphs. The results sugg...

متن کامل

Interdiction of a Markovian Evader

Shortest path network interdiction is a combinatorial optimization problem on an activity network arising in a number of important security-related applications. It is classically formulated as a bilevel maximin problem representing an “interdictor” and an “evader”. The evader tries to move from a source node to the target node along a path of the least cost while the interdictor attempts to fr...

متن کامل

Evader Interdiction and Collateral Damage

In network interdiction problems, evaders (e.g., hostile agents or data packets) may be moving through a network towards targets and we wish to choose locations for sensors in order to intercept the evaders before they reach their destinations. The evaders might follow deterministic routes or Markov chains, or they may be reactive, i.e., able to change their routes in order to avoid sensors pla...

متن کامل

Interdiction Games on Markovian PERT Networks

In a stochastic interdiction game a proliferator aims to minimize the expected duration of a nuclear weapons development project, while an interdictor endeavors to maximize the project duration by delaying some of the project tasks. We formulate static and dynamic versions of the interdictor’s decision problem where the interdiction plan is either pre-committed or adapts to new information reve...

متن کامل

The matching interdiction problem in dendrimers

The purpose of the matching interdiction problem in a weighted graph is to find two vertices such that the weight of the maximum matching in the graph without these vertices is minimized. An approximate solution for this problem has been presented. In this paper, we consider dendrimers as graphs such that the weights of edges are the bond lengths. We obtain the maximum matching in some types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009